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Executive Summary 

This report compares the service life, ownership cost and environmental impact of windows using 

timber, modified timber, aluminium-clad timber and PVC-U frames. 

It uses defined methodologies to compare the Service Life Planning (SLP), Whole Life Cost (WLC) and 

Life Cycle Assessment (LCA) of a standard window (1230x1480 mm with one side-opening light) in 

each of the four frame materials, taking into account the relative durability of the materials and their 

maintenance requirements. 

Service Life Planning (SLP) is a decision process which addresses the development of the service life 

of a building, constructed work, or in this case, a component. Its purpose is to give a structured 

response to establishing normal service life from a reference or estimated service life framework. 

The objective of SLP is to provide reasonable assurance that the estimated service life of a building 

or construction on a particular site, with appropriate maintenance, is at least as long as the design of 

that building. The results show timber frames to have an expected service life of between 56 and 65 

years. Acetylated timber frames show an expected service life of 68-80 years, and timber frames, 

clad with profiled aluminium, 71-83 years. 

Whole Life Cost (WLC) was assessed using a standard discounting method, Net Present Value (NPV), 

which allows the time value of money to be allowed for in the value of future payments or incomes. 

The NPV of purchase, installation, repair and maintenance costs were evaluated over building design 

lives of 60, 80 and 100 years and under mild, moderate and severe exposure conditions. Over a 60-

year design life, the results show that timber windows offer the lowest cost alternative for mild 

scenarios, while aluminium-clad and modified timber offer lower whole life costs for moderate and 

severe scenarios. Despite having the lowest capital cost, PVC-U windows were shown to have the 

highest whole life costs over 60 years in all scenarios. 

Life Cycle Assessment (LCA) is an internationally recognised tool for assessing the environmental 

impact of products, processes and activities. It is a methodology for evaluating the environmental 

load of processes and products during their whole lifecycle and is one of various environmental 

management tools currently available for assessing impact and sustainability. LCA is used to assess 

the environmental impact of processing raw materials, manufacture of finished products and 

components, during construction, to transport materials and products to site, to maintain 

components, and to process materials at their end-of-life to recycle and/or dispose of materials. This 

report is conducted within ISO 14040 and PAS2050 guidelines and sets a new standard for the whole 

life cycle appraisal of timber windows. It considers a base case scenario plus 6 alternative scenarios 

which test the sensitivity of inventory data and boundary inclusions on Global Warming Potential 

(GWP) of the frame materials considered. This report finds that all timber based window frame 

materials are preferable to PVC-U alternatives in every scenario considered. 

Using the methods adopted in this report, recycling is found to be the optimum end of life treatment 

for timber based window frames. The report conclusions lean to supporting the aims of WRAP in 

pursuing greater waste segregation, and possible tighter restrictions on timber waste entering 

landfill sites. This report also demonstrates the significant sensitivity of GWP outputs to the 

sustainable and ethical sourcing of timber under FSC or equivalent standards. 
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This work allows a complete like-for-like longevity, cost and environmental impact comparison of 

timber, modified timber, aluminium-clad timber and PVC-U frame materials. It concludes that there 

is no single or optimal timber based window frame material; there is not a one-size-fits-all solution. 

For various exposure conditions and applications one timber based product may be preferable over 

another in service life terms, while others may prevail in cost or global warming potential terms. It is 

clear that PVC-U windows are not comparable with wood alternatives in GWP terms. Indeed PVC-U 

windows are not comparable with wood alternatives over a number of LCA impact factors. 
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1.0 Introduction  

This report analyses the Service Life Planning (SLP), Whole Life Costing (WLC) and Life Cycle 

Assessment (LCA) of factory-finished timber, modified timber and aluminium-clad timber window 

frames (herein referred to as timber based windows) designed to Wood Window Alliance (WWA) 

criteria, under various exposure and maintenance conditions. It was commissioned by the WWA and 

completes work started at Imperial College London in 2010. The report defines a methodology to 

enable frame properties to be compared on a like-for-like basis. The service life work on timber 

windows is published in partnership with Imperial College London, and its extension, to include 

modified timber and aluminium-clad timber windows, is the work of Dr. Gillian Menzies at Heriot 

Watt University. 

Timber windows referred to in this report are constructed from high quality, preservative treated 

softwood to BS EN 942,BS EN 599 and BS 817; constructed from a defect free enhanced substrate 

(heartwood); and with endgrain and construction joint sealing. Although the analysis here is limited 

to frame materials only, all window units are factory glazed and assumed to be installed in a recess. 

In this report, modified timber is defined as timber which has undergone acetylation. This technique 

creates a high performing wood which can be used in demanding outdoor applications, including 

windows, doors, decking, cladding, and bridges. Wood contains hydroxyl groups that interact with 

water according to changes in climatic conditions - the main reason wood swells and shrinks. 

Acetylation converts these hydroxyl groups to acetyl groups by reaction with acetic anhydride. 

Naturally grown timbers already contain a proportion of acetyl groups, but the acetylation process 

increases this proportion significantly and the resulting timber is more dimensionally stable, 

indigestible (rot resistant) and durable. 

Aluminium-clad timber windows, as referred to here, are timber windows with a full aluminium 

profile clad to the exterior of the window. The aluminium is commonly protected with a powder 

coating, typically guaranteed for around 25 years. The interior of the window appears as a timber 

window. The aluminium can be repainted after 20-30 years to maintain good aesthetic appeal, or 

left untreated with no loss of functional performance. The aluminium profile can also be removed, 

recycled, and a replacement clipped into place. 

PVC-U windows are constructed from 70mm extruded PVC-U extrusions with mild steel 

reinforcement.  

The SLP analysis is based on ISO 15686 methodology to differentiate the service life of timber-based 

windows manufactured using best practice window design, manufacture and coating. 

WLC data is derived using a standard discounting technique, Net Present Value (NPV), which allows 

two or more alternatives with differing financial outlay/income in different accounting periods to be 

compared on an equal basis. 

The LCA analysis has been carried out using SimaPro 7.3.2 software and the Ecoinvent 2.2 database 

which accompanies the software. ISO 14040: Environmental Management – Life Cycle Assessment – 

Principals and Framework has been used as the guiding framework for the analysis contained within 
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this report. All assumptions made throughout the analysis are stated. Any deviations from the 

Ecoinvent 2.2 database have been justified. 

 

2.0 Service Life Planning  

Establishing a service level base case is an essential precursor to the WLC and LCA analyses that 

follow; the estimated service life will predict how many maintenance events are necessary in various 

exposure conditions over the life of a window. Each maintenance event requires materials and 

resources to perform and has both a financial and environmental cost attached it.  

2.1 ISO 15686 

ISO 15686 is the international standard dealing with service life planning; it is a decision process 

which addresses the development of the service life of a building, constructed work, or in this case, a 

component. Its purpose is to give a structured response to establishing normal service life from a 

reference or estimated service life framework. The objective of SLP is to provide reasonable 

assurance that the estimated service life of a building or construction on a particular site, with 

appropriate maintenance, is at least as long as the design of that building. 

ISO 15686-1 describes the general principles of service life planning, of which there are a number of 

approaches that can be used to estimate service life. Figure 2.1 shows the possible approaches to 

service life estimation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Approaches to service life estimation. ISO 15686-8, page 8. 

The factor method for service life estimation, ISO 15686-8 is used in this report, and is based on 

earlier work completed at Imperial College London. Seven factor categories are used to estimate 
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and degradation 
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use conditions, 
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Documented 

service life data  

ISO 15686-7 

For the same component and in-

use conditions, service life may be 

estimated directly from data on 

performance in use. 

Estimated service life 
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service life impact, as shown in Table 2. 1. The factor method is used to obtain an Estimated Service 

Life (ESL) of a component or a design object by modifying a Reference Service Level (RSL) by 

considering the differences between the object-specific and the reference in-use conditions under 

which the RSL is valid [ISO 15686:8 page 11]. The RSL used here is derived from the Building 

Research Establishment Green Guide for Specification, which gives a service life of 35 years for 

Timber Window Accreditation (TWA) Scheme windows. Wood Window Alliance membership criteria 

require members to meet this standard as a minimum. 

Table 2.1 Factors and factor categories of the factor method ISO 15686-8, page 16.  

Factor Factor category 

A Inherent performance level 
B Design level 
C Work execution level 
D Indoor environment 
E Outdoor environment 
F Usage conditions 
G Maintenance level 

 

A factor > 1.00 denotes longer service life estimation, while a factor < 1.00 denotes shorter service 

life estimation. The factors applied can be seen in Appendix 2.1. No single factor applied is greater 

than 1.25. This is deemed conservative, but in line with ISO 15686 guidance, whereby service life 

estimation should be within 2 standard deviations of a documented or tested normal service life 

distribution [ISO 15686:8 page 15]. ISO 15686:8 also states that it is preferable for all factors to be 

within the interval of 0.8 to 1.2, although Note 7 states that larger deviations from unity are possible 

if just a few factors deviate from unity and can be assumed to be independent of each other [ISO 

15686:8 page 13]. The single factor of 1.25 is applied to aluminium-clad windows only and relates to 

the aluminium material used under Factor A. This is independent of other factors used in the 

analysis. 

 

2.2 Service Level Base Case 

Establishing a service level base case has proven difficult for timber windows, despite their 

widespread use since the 17th Century. Evidence from traditional and historic buildings would 

suggest that timber windows have a life expectancy greater than 100 years [Davey, 2007]. English 

Heritage argues that traditional windows can be very durable: many original Georgian and Victorian 

timber windows are still in place [Wood et al, 2009]. 

Asif et al [2005] in an analysis of window sustainability, carried out a survey of over 25 organisations 

to determine the service life of PVC-U, timber, aluminium and aluminium-clad timber windows. The 

thesis conclusions on average service lives are shown in Table 2.2. The same study also reported 

findings from Citherlet [2000], HAPM [1996] and Worcester City Council [WCC, 1990]. Additionally, 

data from the Building Research Establishment have been added to show the range of studies 

performed to date. 

Table 2.2 Various window service lives reported in literature  
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Window type Asif 
(2002) 

Citherlet 
(2000) 

HAPM 
(1996) 

WCC 
(1990) 

BRE generic 
window 

BRE TWA 
window 

Aluminium 43.6 45 35+ 50-60   
PVC-U 24.1 30 25 30 25- 35*  
Timber 39.6 45 35+ 40+ 30 35 
Alu-clad 
timber 

46.7 45     

* 25 years in the original Green Guide, subsequently amended to 35 years following a BRE Client Study 
commissioned by the plastics industry 

 
 

2.3 Service Life Factors 

A strong trend to replace single glazing with double glazing and the promise of “maintenance free” 

window frames has perhaps led to many timber frame windows being replaced long before their 

design life has expired. A number of initiatives to improve the design quality of timber frame 

windows have led to quality, long-lasting systems being introduced to the market. Manufacturing 

criteria play a strong role in extending service life: 

 

 Choice of sustainable, defect free, engineered timber 

 Window design elements such as rounded edges, water shedding angles on cills and beads, 
and joint and end grain sealing 

 Flexible, micro-porous protective paint 

 Factory controlled glazing and coating systems 
 
Design improvements and associated standards are listed in Table 2.3 
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Table 2.3 Service Life Factors for timber frame windows 
 

Category 
 

Influencing Factor Associated Standard 

Base substrate High quality timber 
 

BS EN 942 

Enhanced Substrate Clear face and defect free Laminated 
Heartwood 

BS EN 942 

Beads Rounded edges 
Capillary gaps 
Fully coated 
Drained rebates 

BS EN 644 

Joints and Cills Filled construction joints 
Exposed end grain sealed 
Joints fully coated with D3/D4 adhesive 

WWA Design 
Standards 

Glazing Drained and vented upstand 
Coated rebates and upstands 
Robust glazing beads: nail and fill; aluminium; 
composite 

BS 8000 

Coatings Preservative treated 
Quality tested 
Full factory finish: 120µ dft minimum 
All surfaces coated 

BS EN 599 
BS 8417 

BS EN 927 

Installation/Maintenance Controlled transport and site storage 
Qualified installers 
Manufacturer maintenance instructions 

 

Environment Waste recovery 
Water based coatings: VOC < 50g/l 
No heavy metal additives 

ISO 14001 

Shelter Implementation of specific partial or full shelter 
measures can be envisaged at conservative 
factors of 1.05 and 1.10. Evidence for specific 
circumstances may also indicate that higher 
factors than these are required. 

 

 
This report considers the influence of maintenance levels on the design life and durability of three 

types of window frame: timber, modified timber and aluminium-clad timber. Various maintenance 

cycles are analysed. The influence of location is also considered for three scenarios; mild, 

representing sheltered or part-sheltered positions at non-coastal, low altitude locations; moderate, 

representing sheltered positions in harsh or extreme locations, or part-sheltered positions in harsh 

locations; and severe, reflecting part-sheltered or exposed positions in more exposed rural locations 

which may experience wind-driven rain or salt conditions.  

Figure 2.2 relates these scenarios, and their associated maintenance frequencies, to the durability 

matrix described in BS EN 927-1: Paints and Varnishes - Coating Materials and Coating Systems for 

Exterior Wood - Part 1: Classification and Selection 
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Figure 2.2 Maintenance Frequency for factory finished joinery (BS EN 927-1) 

This report has also attempted to account for window obsolescence due to loss of visual appeal as 

well as due to functional failure. It is possible for a well-designed window, made of appropriate 

materials, to perform/function for more than sixty years without any painting or other decorative 

treatment, but it may be prone to staining, oxidation, and discolouration leading to a perceived need 

for replacement. For example, the powder coating on an aluminium-clad timber window may break 

down over time, having little effect on the function of the window, but affecting the visual appeal of 

the building in which it is installed. In these terms, service life is a function of perception as well as 

technical performance. The purpose of regular maintenance is therefore to maintain the life of the 

window by postponing obsolescence in terms of both aesthetic and technical performance. 

Using ISO 15686-8 methodology, and based upon a relatively conservative service life estimate from 

the Building Research Establishment of 35 years, factors greater than 1.00 can be applied to account 

for the above design improvements. Factors can be made cumulatively, but care must be taken to 

  WINDOW EXPOSURE 

  
Moderate: typically non-

coastal areas at low 
altitude 

Harsh: exposed inland 
locations and areas 

within 0.5 miles of the 
coast 

Extreme: areas of high 
altitude and exposed 

coastal sites 

C
O

N
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R
U
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TI
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N

 

Sheltered e.g. 
beneath porch or 

large roof overhang 

8 years for timber 

12 for modified timber 

30 for Alu-clad timber 

7 years for timber 

9 for modified timber 

30 for Alu-clad timber 

7 years for timber 

9 for modified timber 

30 for Alu-clad timber 

Partly sheltered, e.g. 
window built back in 

reveal. 

8 years for timber 

12 for modified timber 

30 for Alu-clad timber 

6 years for timber 

9 for modified timber 

30 for Alu-clad timber 

5 years for timber 

7 for modified timber 

20 for Alu-clad timber 

Not Sheltered, e.g. 
face of building 

7 years for timber 

10 for modified timber 

30 for Alu-clad timber 

5 years for timber 

7 for modified timber 

20 for Alu-clad timber 

4 years for timber 

6 for modified timber 

20 for Alu-clad timber 

     

  Key:  Mild 

    Moderate 

    Severe 
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exclude double counting. The workings for this analysis are given in Appendix 2. 1, and are 

summarised in Table 2.4. A working spread sheet is also available separately. 

Table 2.4:  Summary of Service Life Planning ISO 15686-8 analysis 
(cumulative for all factors under WWA control A, B, C, E, G) 
 

     

Window type 
 

Typical 
Maintenance 

Period 

Mild Moderate Severe 

Timber Standard 
5-7 years 

65 59 56 

Modified Timber Standard 
10-12 years 

80 72 68 

Aluminium-clad Timber Standard 
20-30 years 

83 75 71 

 
Comparison with literature findings 
 
The results in Table 2.4 agree with an analysis concluded by the BRE which states that  
 

“if a modified timber window built to the principles of best practice, factory finished 
using quality coatings, installed by competent contractors and linked to a recognised 
best practice maintenance and care package it will provide a window of outstanding 
durability and dimensional stability that would meet a 60 year service life 
requirement.” [Correspondence between BRE and Accsys Technologies, December 
2010] 

 
This description is roughly equivalent to windows subject to Factor A and B effects combined. Using 

a design life basis of 35 years and applying Factor A and B effects gives a service life of 60 years for 

modified timber windows using ISO 15686-8 analysis. 

The results in Table 2.4 also agree with the general results concluded by Asif et al and Citherlet, 

which are roughly equivalent to windows subject to Factor A effects only. Using a design life basis of 

35 years and applying Factor A effects in isolation gives a service life of 50 years for Aluminium-clad 

timber windows using ISO 15686-8 analysis. 

 

2.4 Service Life Conclusions 

Figure 2.3 (below) summarises the findings of this section of the analysis, and compares them to 

PVC-U windows with an average service life of 30 years, which represents a consensus of  the BRE 

Green Guide(s) rating for PVC-U windows and the findings of both Citherlet [2000] and the WCC 

[1990]. The analysis shows that, where weather stress is an issue, or maintenance is constrained, 

modified timber or Aluminium-clad timber may be optimal. The cost of erecting scaffolding on a 10-

12 year (or shorter) basis for a high-rise building can be significant, while the selection of windows 

with a 20-30 year maintenance schedule could be more attractive.  
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To make conclusions more robust, however, the cost and environmental implications of window 

material choice need to be considered. Section 3.0 addresses the issue of whole life cost, while LCA 

issues are considered in a separate report. 

 
Figure 2.3 Expected Service Life for WWA window standards (Factors A, B, C, E and G) 
 
 

3.0 Whole Life Costing 

A whole life cost comparison was prepared using data from the SLP model and a standard 
discounting technique. The results are summarised in Table 3.2.  

 

3.1 Net Present Value 

The simple Net Present Value (NPV) discount model provides a useful tool for comparing the whole 
life costs of different investment options, although the outcomes can be significantly influenced by 
changing underlying assumptions. For the analysis presented here, an annual inflation rate of 3%, 
and an outturn interest rate of 7% have been assumed in line with local authority evaluation rates 
for social building finance. End-of-life disposal costs have been omitted due to lack of reliable data, 
and a rapidly changing landscape with regard to construction waste and recycling. 

For PVC-U window frames, in–service maintenance costs have been ignored and a service life of 25-
35 years assumed, in line with the findings shown in Table 2.2. The maintenance cycles for timber 
windows are in line with manufacturers’ recommendations, with higher costs applied to longer 
cycles.  

Timescale can also be significant in discounting models; this analysis has been completed for 

assumed building lives of 60, 80 and 100 years to explore sensitivity to this effect.  The underlying 

model assumptions are shown in Table 3.1 

 

0 10 20 30 40 50 60 70 80 90

PVC-U

Timber

Modified timber

Al-Clad

years 

Expected Service Life 
WWA window Standards 

Severe

Moderate

Mild



Life Cycle Assessment of timber, modified timber and aluminium-clad timber 
windows. Report for the Wood Window Alliance, June 2013. 
 

12 
 

Table 3.1 Maintenance costs and periods (all costs in £) 

Window 
type 

Capital cost Installation 
cost 

Maintenance Frequency 
(years)* 

Cost of each 
maintenance 

event 

Glazing 
cost per 
annum 

   mild moderate severe   
Timber  290 84 8 6 4 20 9 
Modified 
timber 

340 84 12 9 6 24 9 

Aluminium-
clad timber 

362 84 30 30 20 30 9 

PVC-U 280 84 - - - - 9 

* See Figure 2.2 

 

Table 3.2 shows the current day cost (NPV) of a window over a building lifecycle of 60, 80 and 100 

years for various exposure scenarios and accommodating the maintenance frequencies described in 

Table 3.1. For a building predicted to last 60 years, and using a WWA timber window under 

moderate conditions, the NPV is £644. This means that to purchase the window and maintain it over 

60 years costs £644 in today’s money. 
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Table 3.2 NPV and indexed price comparison of windows over 60, 80 and 100 years.  

   

NPV of Total Cost 
including inflation (£) 

 

Indexed values 
(PVC = 100) 

 
Window type 

 
60 

years 
80 

years 
100 

years  
60 

years 
80 

years 
100 

years 

          

Mild 
scenario 

timber 
 

590 632 639 
 

87 92 91 

modified timber 
 

626 657 663 
 

92 95 94 

Ali-clad timber 
 

622 634 657 
 

92 92 93 

 PVC-U 
 

678 689 706 
 

100 100 100 

          
Moderate 
scenario 

timber 
 

644 659 667 
 

95 96 94 

modified timber 
 

639 677 684 
 

94 98 97 

Ali-clad timber 
 

622 658 663 
 

92 95 94 

 PVC-U 
 

678 689 706 
 

100 100 100 

          
Severe 
scenario 

timber 
 

685 703 710 
 

96 94 94 

modified timber 
 

669 714 722 
 

93 96 96 

Ali-clad timber 
 

633 674 680 
 

88 90 90 

 PVC-U 
 

717 747 753 
 

100 100 100 
 

Green denotes lowest cost option Red denotes highest cost option 

In a mild scenario, representing sheltered or part-sheltered locations with a non-coastal climate, 

timber windows are consistently least expensive, while in moderate and severe scenarios 

aluminium-clad timber windows are seen to be the lowest cost option. This is largely reflective of 

their reduced maintenance period (20-30 years compared to 5-7 years). Modified timber remains 

consistently less expensive than PVC-U alternatives due to the significantly longer service life 

afforded by the acetylation of the timber. Despite the appeal of “zero” maintenance on PVC-U 

windows, they are consistently most expensive in all three climate/construction scenarios due to 

their shorter, 25-35 year, lifespan. 

Service life estimations play a critical role in WLC calculations. At 65 years, the timber window will 

have been replaced once for all climate/construction scenarios and the PVC-U window twice, but the 

modified timber and aluminium-clad timber windows could have up to 18 years life left. Were the 

building to last in excess of 100 years and towards 150 years (or before the second replacement of 

timber windows), the benefit in lower WLC would increase, though the sensitivity of NPV analysis 

over such extended time periods is limited and 60 years is considered sufficient building longevity in 

most current cases [BRE Green Guide, 2009]. 
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3.2 Cumulative NPV 

The cumulative costs are perhaps best viewed on NPV graphs shown in Figures 3.1, 3.2 and 3.3.  
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3.3 Whole Life Cost Conclusions 

Using NPV analysis, the whole life cost comparison for each option was also evaluated. With PVC-U 
windows indexed at 100, all timber based window options were indexed at less than 100: 
demonstrating that capital, installation, maintenance and replacement costs are lower for all 
building life options of 60, 80 and 100 years, and for all timber window alternatives. For mild 
exposures, timber windows offered the lowest lifetime cost option, while for moderate and severe 
exposures the more durable modified timber and aluminium-clad windows gave more favourable 
lifetime cost outcomes. 
 
In practice, if initial capital cost is the only criterion, PVC-U windows are the least expensive short 
term option. If, however, total lifetime cost is the primary concern, this analysis suggests timber 
offers the lowest cost option for properties in a typical urban/suburban setting, aluminium-clad 
timber options would be favoured on high-rise or multi-storey buildings, benefitting from their 
extended service life and low access requirement, while in coastal or moderately exposed locations 
modified timber or aluminium-clad timber windows may be optimal.  
 

4.0 Life Cycle Assessment  

The construction industry is the highest consumer of materials globally, consuming around 6 tonnes 

of material per person per year. Energy is needed to create buildings through extraction and 

processing of raw materials, manufacture of finished products and components, during construction, 

to transport materials and products to site, to maintain components and to process materials at 

their end-of-life to recycle and/or dispose of materials [Consoli et al., 1993]. If a boundary is drawn 

around this lifecycle and an assessment of inputs and outputs which cross this boundary is made, 

some attempt is given at assessing a building’s Life Cycle Assessment (LCA). 
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4.1 Introduction to LCA  

Figure 1 illustrates the lifecycle of window materials. Sometimes whole buildings are assessed in LCA 

terms, but more commonly individual materials and components are subject to detailed analysis. 

Figure 1: Life Cycle Assessment of Window Materials 

There are many methods available for assessing the environmental impacts of materials and 

components. LCA is a methodology for evaluating the environmental load of processes and products 

during their whole lifecycle and is one of various environmental management tools currently 

available [Sonnemann et al., 2003]. With its origins in the 1960s [Selmes, 2005] LCA has become a 

widely used methodology over the last two decades for understanding better the impact which 

product lifecycles have on local and global communities.  

LCA is an internationally recognised tool for assessing the environmental impact of products, 

processes and activities, using indicators described in Table 1. 

 

Table 1 SimaPro Environmental Impact Measures 

Abiotic Depletion  Ozone Layer Depletion  Terrestrial Ecotoxicity  

Acidification  Human toxicity Photochemical Oxidation  
Eutrophication Fresh Water Aquatic Ecotoxicity  Global Warming Potential 
Marine Aquatic Ecotoxicity   

 

Abiotic Depletion refers to the depletion of non-renewable resources. Some non-renewable 
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resources can actually be renewed over a period of time, e.g. the extraction of sand from a river 

channel can be replenished over time by the further weathering of rocks. Many definitions refer to a 

500 year period. If resources are not renewable within this period they are termed non-renewable. 

Acidification refers to direct outlets of acids or by outlets of gases that form acid in contact with air 

humidity and are deposited to soil and water. 

Eutrophication is defined as an increase in the rate of supply of organic matter in an ecosystem, and 

the process by which a body of water acquires a high concentration of nutrients, especially 

phosphates and nitrates. These can promote excessive growth of algae which limit oxygen supply to 

other organisms. 

Marine Aquatic Ecotoxicity refers to the impacts of toxic substances on marine ecosystems, such as 

seashores, open ocean, and estuaries. 

Ozone Layer Depletion refers to the depletion of an area of the upper atmosphere which contains 

ozone. This layer protects the earth from high levels of ultraviolet radiation. 

Human toxicity is based on tolerable concentrations in air, water, air quality guidelines, tolerable 

daily intake and acceptable daily intake for humans 

Fresh Water Aquatic Ecotoxicity refers to the impact of toxic substances emitted to marine aquatic 
ecosystems. 
 
Terrestrial Ecotoxicity refers to the impact of toxic substances emitted to terrestrial (land) 
ecosystems. 
 
Photochemical Oxidation is the reaction of a chemical with light, e.g. photochemical smog which is 
caused by hydrocarbons and nitrous oxides reacting under the influence of UV light. It is usually 
measured in concentration and duration levels throughout the course of a day. 
 
Global Warming Potential is a relative measure of how much heat a greenhouse gas traps in the 
Earth’s atmosphere. It is measured in Carbon Dioxide equivalency (CO2e), which is described in Table 
2 below. 
 
Some of these impacts are inter-linked. It is seen in the results to follow that as one impact rises, so 
do related impacts. For example photochemical oxidation occurs when hydrocarbons and nitrous 
oxides react under UV light. Nitrous Oxides are a type of gas that cause acidification. Abiotic 
depletion is a measure of non-renewable resource depletion. Fossil fuels are a non-renewable 
resource that when burned increase the world’s global warming potential. 
 
Life Cycle Energy Analysis (LCEA) emerged in the late 1970s and focuses on energy as the only 

measure of environmental impact of buildings or products. The purpose of LCEA is to present a more 

detailed analysis of energy attributable to products, systems or buildings; it is not developed to 

replace LCA but to compare and evaluate the initial (capital) and recurrent (operational) energy in 

materials and components. Life Cycle Carbon Assessment (LCCA) is likened to LCEA, and relies on 

prevailing energy structures to convert mega joules of energy to kilograms of CO2. While the base 

case scenario in this report shows full LCA results over 10 impacts, the six scenario analyses which 

http://toxics.usgs.gov/definitions/nutrients.html
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follow in section 6 will focus on LCCA. Other terms commonly used when discussing lifecycle 

definitions, energy and carbon issues are shown in Table 2. 

Table 2: Commonly used lifecycle terms 

Cradle to Grave Describes all the processes which a product or component goes through from 
raw material extraction to obsolescence and final disposal. It assumes no EoL 
residual value. 

Cradle to Gate Describes the impacts associated with products, materials or processes up to 
the point at which they are packaged and ready for delivery to site. 

Cradle to Site Describes the impacts associated with suppliers (raw materials), transportation 
to manufacturing centre, manufacturing, packaging, and transportation to site. 
In the case of construction impacts, this would also include any processing 
required on site to make use of the product or component. 

Cradle to Cradle Similar to Cradle to Grave, but assumes that an obsolete component has a 
residual value at the end of its first life. It assumes that construction waste can 
be recycled and used to provide raw materials for re-manufacture of the same 
product, or new and different products. 

Embodied Energy 
(EE) 

A Cradle to Gate or Cradle to Site analysis based on energy inputs only. i.e. 
those energy inputs relating to raw material extraction, transportation, 
processing, manufacturing, and packaging. 

Embodied Carbon 
(EC) 

Converts this embodied energy from MJ to tonnes of CO2. Frequently 
embodied CO2 is given as CO2e 

Equivalent Carbon 
Dioxide (CO2e) 

A way of describing how much global warming a given type and amount of 
greenhouse gas may cause, using the functionally equivalent amount or 
concentration of carbon dioxide (CO2). Put simply, if CO2 has a Global Warming 
Potential (GWP) of 1, then Methane has a GWP of 25, and Nitrous Oxide a 
GWP of 298. 

 

Generally speaking a material, product or component has three main stages to its cradle to grave 

carbon lifecycle; Embodied Carbon (EC), Operational Carbon (OC) and End of Life carbon (EoL). In the 

case of windows, maintenance is captured under the operational energy stage. A full dynamic LCCA 

of windows may also include the glazing and thermal insulation qualities (the U-value) and give some 

indication of the energy expended to heat a home or building. This analysis will consider only the 

lifecycle of the window frame materials. 

A comprehensive LCCA study has four main stages: 

1. Scope and boundary setting; 

2. Inventory analysis; 

3. Impact assessment; and 

4. Improvement analysis. 

A fifth and important element of LCCA includes an analysis of data sensitivity to the overall results. 

This may include an analysis of the quality of inventory data used, a test of the sensitivity of 

assumptions made, and/or a number of scenario analyses. 

Before considering the specific issues relating to these LCCA stages, some points to note include: 
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Boundary definitions The accuracy of carbon calculations is directly related to, and profoundly 
influenced by, boundary definitions. Naturally, more comprehensive boundary assumptions result in 
more precise calculations. The direct carbon requirement for manufacturing processes is generally 
less than 50% of the total embodied carbon of a product, but can be up to 80%, while the indirect 
carbon requirement for extracting raw materials is generally less than 40%, and the carbon emitted 
to make the capital equipment less than 10%. In general, the carbon requirement to make the 
machines that make the capital equipment is very low.  Inclusion/exclusion of indirect processes like 
raw material extraction, embodied carbon of manufacturing machinery, transportation, reoccurring 
embodied carbon of materials, or the feasibility of recycling and reuse, can have a significant effect 
on overall results.  

 

Completeness of study The more processes which are included in a study the more complete and 
accurate the results become. Indirect carbon contributions depend upon many factors, including raw 
material sources. The Inventory of Carbon and Energy (ICE) database commonly reports data 
sensitivities of 30% due to varying boundary inclusions and completeness of studies [ICE, 2011]. 

 

Energy supply assumptions These assumptions can produce significant variations in embodied 
carbon evaluations; whether primary or secondary (delivered or end use). If primary energy is 
reported instead of delivered or end-use energy, the value may be 30 to 40% higher for common 
building materials. Lack of information regarding these factors is one of the main obstacles in 
comparing life cycle inventory results. 

 

Energy source assumptions Energy sources inherently have varying carbon coefficients. Generation 
of electricity from hydroelectric power or other renewable sources have significantly different 
impacts than conventional, hydrocarbon based, fossil fuel sources. For example in Canada and 
Norway, aluminium is produced solely using hydroelectric power. Brick production in 
Nottinghamshire uses methane from landfill [Smith, 2005] rather than traditional (generally coal 
fired) energy supplies. Variations in energy source and distribution will impact both embodied 
energy values (due to cycle efficiencies), and carbon emissions resulting from energy use. Buchanan 
and Honey [1994] found that carbon emissions relating to material production could differ by a 
factor of three depending on assumptions made over energy supply. 

 

Product specification Differences in processing and application also generate large variances. Virgin 
steel consumes significantly more energy than recycled steel, and different processes within the 
steel manufacturing industry affect embodied carbon values. 
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Manufacturing differences Processing efficiency levels improve over time as a result of technological 
advances, and can vary depending on the geographical location. Studies following Buchanan and 
Honey’s findings *1994+ in construction materials (summarised by Alcorn and Wood, 1998) indicate a 
continuing downward trend in processing energy for many materials. Conversely, however, there is a 
trend to make more technical specifications for construction projects, increasing in some cases, the 
length of supply chains and processing steps to final product completion. 

 

4.2 Methodologies 

There are a number of recognised approaches to LCA, LCEA and LCCA, including process analysis, 

Input-Output analysis, and hybrid analyses.  

Process Analysis Method 

This is the oldest and still most commonly used method, involving the evaluation of direct and 

indirect energy inputs to each product stage.  It usually begins with the final product and works 

backwards to the point of raw material extraction.  The main disadvantages centre on the difficulties 

in obtaining data, not understanding the full process thoroughly, and extreme time and labour 

intensity. These result in compromises to system boundary selections (which are generally drawn 

around the inputs where data is available). Furthermore it is likely to ignore some of the processes 

such as services (banking and insurance, finance), inputs of small items, and ancillary activities 

(administration, storage). The magnitude of the incompleteness varies with the type of product or 

process, and depth of the study, but can be 50% or more [Lenzen and Treloar, 2002]. For these 

reasons results are found to be consistently lower than the findings of other methodologies. Process 

LCA is best used to assess or compare specific options within one particular sector. This report is an 

example of such a method. The major advantage is the ability to define individual product life stages 

and material inputs, enabling in-depth sensitivity or scenario analyses to be performed.  

Input Output Analysis 

Originally developed as a technique to represent financial interactions between the industries of a 

nation, this method can be used in inventory analysis to overcome the limitations of process 

analysis. The method is based on tables which represent monetary flows between sectors, and 

which can be transformed to physical flows to capture environmental fluxes between economic 

sectors. The number of sectors and their definition vary within each country. The great advantage of 

this method is data completeness of system boundaries; the entire economic activities of a nation 

are represented. However despite the comprehensive framework and complete data analysis, I/O 

analysis is subject to many uncertainties, due mainly to the high level of aggregation of products. 

Many dissimilar commodities, or sectors containing much dissimilarity, are put into the same 

category and assumed identical; assumptions are based on proportionality between monetary and 

physical flows. In some countries I/O tables are not updated frequently, resulting in temporal 

differences with irrelevant or unrepresentative data. Unsurprisingly, LCAs based on process analysis 

and I/O analysis yield considerably different results. I/O-LCA is suitable for strategic policy making 

decisions (comparing sectors) as well as providing complementary data on sectors not easily covered 

by process LCA. This method would be impractical for the current study. 
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Hybrid Energy Analyses 

The disadvantages of previous methods can be reduced if a hybrid method, combining both P-LCA 

and I/O-LCA methodologies, is employed.  In this model some of the requirements are assessed by 

process analysis, while the remaining requirements are covered by input–output analysis. The main 

disadvantage of these techniques is the risk of double counting. 

For the analysis contained in this report a process-LCA approach is adopted, using SimaPro 7.3.2 

software modelling tools and the Ecoinvent 2.2 database. Deviations from the Ecoinvent 2.2 

database are made in justified cases and are identified throughout the analysis. For simplicity the 

results are reported for Global Warming Potential (GWP) only. A number of scenario analyses are 

included and results are reported with potential error bars. 

4.3 Boundaries, Scope and Functional Unit 

The aim of this study was to define an approach for the fair and “apples for apples” comparison of 

various window frame materials in terms of their lifecycle environmental impact. 

A lifecycle is defined as a period of 60 years for this study. This period of time is in-keeping with 

other analyses of building components (for example the BRE Green Guide to Specification). 

The purpose of the study is to provide a comparison of materials used in contemporary window 

frames. The purpose is not to define absolute values for the GWP or EC of materials over their 

lifecycles. The results should be interpreted in terms of their relative magnitude, rather than their 

absolute value. 

The findings of this report are to be used in conjunction with the Service Life Planning (SLP) and 

Whole Life Cost (WLC) report issued in June 2012, and are intended to provide information to 

specifiers concerned with selecting windows with a whole life appraisal approach e.g housing 

associations and clients/owners with a long term investment view. 

The LCCA contained here adopts a process-LCA approach which includes the frame materials of the 

window. The boundary includes all raw material extraction, transportation and processing, 

manufacturing energy, finishing, site construction, maintenance over 60 years, transportation and 

End-of-Life (EoL) processes. It excludes the energy and impact of manufacturing the machinery 

required to make the windows, the glazing unit for the windows, the window ironmongery, and the 

dynamic differences in thermal performance of the windows (U-value factors). 

The study is a Cradle to Grave analysis, although one scenario considers the Cradle to Cradle impacts 

of processing materials for use as recycled content in future products. 

The study also assumes that timber used in windows acts as a carbon store, according to the UK 

PAS2050 standard [BSI, 2011]. It assumes that all timber is sustainably sourced and managed 

according to FSC (Forest Stewardship Council) or equivalent specification. The FSC was founded in 

response to public concern about deforestation and demand for a trustworthy wood-labelling 

scheme. FSC certification is focused on forest management and a chain of custody. 
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The functional unit of the study is kgCO2e per window. The window size is consistent for all options 

and scenarios in the study: a standard window unit measuring 1230mm wide by 1480mm high. 

4.5 Inventory Analysis 

A base case scenario was developed to describe as closely as possible the current assumptions, 

processes, transportation, locations, energy mix, disposal and other prevailing factors. Later in 

Section 6.0 a number of alternative scenarios are described and assessed. 

The basic process, materials, waste, energy, heat and transportation needed over the lifecycle of a 

basic timber window is described and quantified in Figure 2. Information to populate Figure 2 was 

taken from a report by Davis Langdon to the Wood Window Alliance [Davis Langdon, 2010] which 

details quantities of material used, co-products generated, waste streams and energy sources 

throughout the manufacturing process. 

Other data used is taken from the Ecoinvent 2.2 database for all raw materials, transportation, 

energy consumption, avoided products and processes required. 
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Figure 2: Cradle to Grave Inventory of inputs and outputs for a base case timber window frame (quantities stated are per 12 windows) 
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Inventory notes for frame materials 

For aluminium-clad (Al-clad) timber windows a mass of 5.4kg of aluminium is accounted for, 

including 5% waste. Over a 60 year lifecycle it is assumed that the aluminium profile is replaced once 

in mild and moderate exposure scenarios, and twice in a severe exposure scenario. All aluminium is 

recycled. 

For modified timber wood is sourced from the Radiata pine species in New Zealand. The 

transportation requirement via sea freight is accounted for in addition to the requirements for the 

wood acetylation process. This requires acetic anhydride as a raw material and produces high 

performance, durable timber as a product, and acetic acid as a by-product of the acetylation 

process. The LCA simulation is based on the Halcon process and a new database entry made in 

SimaPro to provide inventory information using data from Accsys Technologies, and provided by 

Imperial College London [Hillier & Murphy, 2002]. A major consideration of the Halcon process is the 

large credit given for the avoided production of acetic acid. An adjustment was also made to the 

quantity of wood required for the frame manufacture stage. Radiata pine undergoes acetylation in a 

range of set dimensions. Based on the size of window frame for this study, an inventory of 

acetylated timber sections was compiled, and the associated quantity of waste calculated. 

For timber and modified timber frame options 0.39kg of paint is factory applied to the finished 

windows. At each maintenance event, based on a mild, moderate or severe exposure scenario a 

further 0.39kg of paint is applied. 

For PVC-U windows a mass of 17.45kg of Polyvinylchloride and 4kg of reinforcing steel is accounted 

for. PVC-U windows are produced in many locations throughout the UK and EU. With no specific 

data on transportation from factory to site, this is excluded from the study at present. The mass of 

PVC-U is based on a 70mm A-rated window. The mass of steel is taken from a BRE client report on 

Generic Environmental Profiles of Timber Windows, cited in Davis Langdon [2010]. 

Co-products and biofuel 

Co-products of the life cycle (used as skirting boards and architraves) are removed from the system 

in the same way as cradle to grave elements, assuming no residual EoL value, but also implying no 

impact on the current lifecycle. 

Biofuel in the LCA system refers to offcuts and sawdust which are used to provide heat and/or 

power within the lifecycle. E.g. biofuel at the sawn timber stage is used to dry timber in the kiln. 

Biofuel produced while selecting heartwood may be used to heat the factory and offices on the 

processing site. Other waste can be used for animal bedding or as raw material to the particleboard 

industry. This type of waste is assumed to have no residual EoL value or impact. 

Timber carbon storage and forest stewardship 

It is assumed that all timber used in the production of timber and timber based window frames are 

sustainably sourced. On 3 March 2013, the European Union (EU) Timber Regulation entered into 

force, making it a crime to introduce illegally harvested timber and products into the EU market. 

Importing companies are required to have a due diligence system to avoid this. According to the 
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British Standard, PAS2050, biogenic carbon storage must be fully accounted up to a period of 100 

years. Any emission occurring after 100 years is not considered. In this study, the building life is 

taken to be 60 years and therefore all carbon sequestered during the growing phase of the trees, 

and the subsequent known release of this carbon through combustion or rotting in landfill are 

accounted for. Any carbon stored in wood products which are recycled at EoL remains; no residual 

value is assumed. 

For 1000kg of felled timber, the sequestered carbon dioxide stored is assumed to be 1600kg. The 

carbon content of dried wood is approximately 50%. Using an assumed 12.5% retained moisture 

level and 50% of the dry weight as carbon, the carbon in 1000kg of wood weighs 436kg. The 

molecular mass of carbon is 12, while for oxygen is 16. This means that each kg of carbon in the 

timber has been drawn from 3.67kgCO2. For sustainably sourced timber this leads to a carbon store 

of 436 x -3.67 = -1600kgCO2. This value has been entered into the SimaPro model in a simulated 

opening balance manner. 

Base Case End of Life Scenario 

The base case EoL scenario is based on a recent update publication by WRAP [WRAP 2012]. For 

timber the baseline recycling rate for construction and demolition in 2008 was 78%. The remaining 

22% is divided equally between incineration with electricity production (avoided electricity at UK 

grid production), and landfill with methane capping and electricity production. By 2015 WRAP makes 

recommendations under two policy options. The first is a restriction from landfill for different types 

of waste which would results in 86% of construction and demolition waste being recycled by 2015 

and 50% of the remainder diverted to combustion; the second is to place a ban on unsorted waste 

which would results in 88% of construction and demolition waste being recycled by 2015 and 70% of 

the remainder diverted to combustion. 

Current practice for PVC-U suggests that 12% of windows are crumbed and recycled (re-extruded for 

possible use in new PVC-U windows), 12% are incinerated, and 76% are landfilled [Davis Langdon, 

2010]. According to the Ecoinvent database the degradability of PVC-U in landfill over 100 years is 

1%. While the release of carbon and methane is therefore very small, the loss of fossil fuel based 

materials should be considered. Also, the capacity of landfill sites to “hide” all our refuse is of 

considerable ongoing concern. Reported by the Environment Agency in Zglobisz et al [2010], the 

landfill capacity in England and Wales is sufficient only until 2015. 

 

4.6 Impact Assessment 

SimaPro 7.3.2 gives a number of environmental impact categories and a full LCA appraisal, as listed 

in Table 2. Figure 5 shows the full range of impacts associated with each frame material for the base 

case scenario over a 60 year building life. 
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Figure 5. Full LCA results for base case scenario. Note this graph is indexed to 100% and does not 

show absolute values. 

It is clear to see from Figure 5 that in nine of the ten impact factors calculated using SimaPro, PVC-U 

has a significantly increased impact (100% compared to 25% or less for other window frame options) 

than timber window frame options. Positive impacts, which are at a significantly lower level than for 

PVC-U (25% or less), are seen for some impact factors for timber based products. These can be 

attributed to the paint production process, to the acetylation process for modified timber options, to 

aluminium production processes, or to energy production processes. Strongly negative impacts are 

largely attributed to the carbon sequestration effect of growing trees, or where isolated to modified 

timbers, to the benefit of avoided acetic acid production created as a by-product of the acetylation 

process. 

The exception is noted under the ozone layer depletion metric, where PVC-U has a significantly 

lower impact (less than 10% of the impact of Al-clad window frames in a severe environment) than 

both timber products and Al-clad timber products. This difference could be attributed to the paint 

applied both at the manufacturing stage and throughout the 60 year maintenance period of timber 

frame windows. The negative impact shown for modified timbers may be an arithmetic summing of 

the positive impact of paint used, and the negative impact of avoided acetic acid production. The 

strongly positive impact of Al-clad window options is likely attributed to the production of 

aluminium; the difference between timber and Al-clad timber frames is the addition of aluminium 

profiling and a reduced maintenance schedule over 60 years. i.e. less paint is applied, but two sets of 

aluminium profiles are accounted for. 

In order to make a simplified basis for comparison across frame material choices and the various 

scenarios considered in Section 6.0 a focus is made on the Global Warming Potential (GWP) of each 

permutation, measured in KgCO2e/window. GWP demonstrates the largest variation between 

scenarios and window options throughout the study and is selected as the most commonly used 

LCA/LCCA indicator. A focus on GWP only for the base case reveals the graph shown in Figure 6. 
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Figure 6: GWP for base case scenario 

It is immediately noticeable that all timber based window options have negative values while the 

PVC-U option has a strongly positive impact. This is due to the carbon storage effect of timber during 

its growth phase. In the scenario analysis below it is shown how this negative impact is affected 

positively or negatively in relation to EoL assumptions and treatment, and whether timber is 

sustainably sourced. 

It is also worth noting that Figure 6 represents the impact over a 60 year period. Each of the timber 

based options has a minimum service life which would service a 60 year building design life. The 

various exposure scenarios considered demonstrate the application of paint in maintenance events 

of timber and modified timber, and the replacement of aluminium cladding in Al-clad window 

frames over 60 years. According to the service life planning part of this study only PVC-U windows 

would require complete replacement within a 60 year building life. In a mild/moderate exposure 

scenario there would be one complete window replacement over a 60 year building life, while in a 

severe exposure scenario there may be two complete window replacements.  

It is stressed that rather than focussing on the absolute values of GWP for each frame type and 

scenario that the results are used comparatively. For the reasons emphasised in the methodology 

section above it is rare for one LCA study to be directly comparable with another. 

4.7 Waste Scenario Analysis and sensitivity 

Using the SimaPro model for the base case described above, six scenarios were considered which 

test the sensitivity of assumptions made about timber sourcing and the end of life treatment of all 

materials. These scenarios are as follows: 

1. Timber is not sustainably sourced and therefore cannot act as a carbon store since no 

replacement tree is planted when the raw materials are felled. 

2. All materials are recycled at EoL on a Cradle to Grave basis, i.e. no residual value is given for 

materials which will enter a future product lifecycle. 
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3. All materials are recycled at EoL on a Cradle to Cradle basis, i.e. construction waste can be 

recycled and used to provide raw materials for re-manufacture of the same product, or new 

and different products. The benefit of providing reduced impact raw materials to a future 

lifecycle is counted in this lifecycle as a positive impact. This is outwith the recommendation 

of ISO 14040 but is included here to investigate if there are any strongly influencing benefits 

from the onward use of recycled materials. 

4. All materials are incinerated at EoL and electricity produced is fully offset against the 

emissions generated, i.e. electricity is generated as an avoided product. This is an unlikely 

scenario given the recommendations set out by WRAP [2012], but is investigated to 

determine any strongly influencing results. 

5. The outcomes in Scenario 4 are heavily dependent on the assumptions used to determine 

the carbon intensity of grid electricity in the UK. The current intensity factor published by 

Defra is 0.547 KgCo2e/kWh. As we move forward with the UK Government’s aims to 

decarbonise grid electricity, this value is assumed to drop. The benefit to the lifecycle of 

avoided electricity production through waste incineration is therefore reduced as we 

progress towards a lower carbon intensity grid. Scenario 5 therefore includes avoided 

electricity from EoL incineration at 50% of the current grid carbon intensity. 

6. Scenario 6 is similar to Scenario 5, but assumes a purely hypothetical analysis of a zero 

carbon intensity electricity grid in the UK. 

Figures 7-12 show the GWP results for each of these six scenarios. 

 

Figure 7: Scenario 1 GWP of unsustainably sourced timber (no carbon sequestered during growth) 

0.0

20.0

40.0

60.0

80.0

100.0

120.0

K
gC

O
2

e
/ 

w
in

d
o

w
 

Scenario 1: Non sustainably sourced timber 

Modified timber (mild scenario)

Modified timber (moderate scenario)

Modified timber (severe scenario)

Al-clad (mild/moderate scenario)

Al-clad (severe scenario)

PVC-U (mild/moderate scenario)

Timber (mild scenario)

Timber  (moderate scenario)

Timber (severe scenario)



Whole Life Analysis of timber, modified timber and al-clad timber windows. 
Final report for the Wood Window Alliance, June 2013. 

29 
 

 

Figure 8: Scenario 2 GWP of Cradle to Grave recycling 

 

 

Figure 9: Scenario 3 Cradle to Cradle recycling of waste (includes benefit to next lifecycle) 
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Scenario 3: Cradle to Cradle recycling of window waste 

Modified timber (mild scenario)

Modified timber (moderate scenario)

Modified timber (severe scenario)

Al-clad (mild/moderate scenario)

Al-clad (severe scenario)

PVC-U (mild/moderate scenario)

Timber (mild scenario)

Timber  (moderate scenario)

Timber (severe scenario)



Whole Life Analysis of timber, modified timber and al-clad timber windows. 
Final report for the Wood Window Alliance, June 2013. 

30 
 

 

Figure 10: Scenario 4 All materials incinerated at EoL (current UK grid carbon-intensity) 

 

 

Figure 11: Scenario 5 All materials incinerated at EoL (50% UK grid carbon-intensity) 
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Scenario  4: Global Warming Potential of 100% incineration at EoL 
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Scenario 5: Incineration with 50% carbon intensity of electricity grid 
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Figure 12: Scenario 6 All materials incinerated at EoL (Zero UK grid carbon-intensity) 

Figure 13 attempts to capture these variances in one graph to show the potential shift in GWP 

results according to these scenario assumptions and investigations. Note that Figure 12 omits the 

effect of non-sustainably sourced timber (as this is now illegal under EU law), and the scenario for 

Cradle to Cradle analysis (as this is outwith ISO 14040 guidance). 

 

Figure 13: Base Case with error bars to show impact of Scenarios 2 and 4-6 
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4.8 LCA Discussion and Conclusions 

In nine of the ten impact categories considered in this LCA report, timber based window frame 
options have a lower impact than PVC-U window frames. Where PVC-U is indexed to 100, the 
comparative impacts of timber frame options are 25% or less. The exception to this is noted under 
ozone layer depletion where PVC-U is less than 10% of Al-clad timber options. 

Seven main discussions result from a scenario analysis which followed the full LCA results of a base 
case. These include the following issues and were performed to test the impact of EoL treatments on 
the overall GWP results: 

 Sustainable sourcing of timber 

 Recycling of materials 

 End of life treatment 

 Boundary inclusion 

 Reducing intensity of grid electricity 

 Service life impact 

 Comparison of timber frame options 

Sustainable sourcing of materials 

The impact on the GWP of all timber based window frames which are sustainably sourced is clearly 

evident. The only scenario for which the GWP is positive for timber based options is seen when no 

carbon sequestration can be accounted for in the growing phase of the trees. New EU regulations 

from March 2013 ensure the legal obligation of timber users to source raw materials responsibly and 

ethically. This scenario is therefore purely hypothetical, but shows the sensitivity of the study to 

PAS2050 guidelines. The topic of carbon sequestration and its accounting is a subject of strong 

debate amongst researchers [Ostle et al, 2009]. This study highlights the importance of getting this 

right. 

Recycling of materials 

The optimum scenario for EoL treatment for timber products is shown to be recycling, with the 

largest negative GWP values seen in Scenarios 2 and 3. This is because the carbon remains stored in 

the timber and is not released through incineration or landfill decay. 

In Scenario 2 (Cradle to Grave recycling) no significant benefit is seen for PVC-U windows over the 

base case scenario (largely landfill for PVC-U). This is because SimaPro deals with these processes in 

essentially the same way. Cradle to Grave analysis assumes no EoL residual value for PVC-U, while 

landfill assumes minimal biodegrading of PVC-U in landfill. Clearly it would be better to recycle PVC-

U windows than landfill them, but as the lifecycle for the window has ended under Cradle to Grave 

analysis, this cannot be accounted in this lifecycle. 

Scenario 3 (Cradle to Cradle recycling) is very different. The positive benefit to timber and PVC-U 

disposal is clearly evident with the best GWP values for all windows. This is a question of LCA 

boundary setting which must be consistent within a comparative LCA study. It is still seen, however, 

that timber based window frames perform better in GWP terms than PVC-U even when Cradle to 

Cradle boundaries are set. 
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End of Life Treatment 

Clearly the EoL assumptions made are critical to the outcome of the study. Perhaps the best, and 

fairest, comparison which can be made at present is based on current EoL treatments for the various 

frame materials. In all scenarios, in terms of GWP, timber based window frames outperform PVC-U 

alternatives. 

It is also seen that the optimum EoL treatment for timber is to recycle it. Initiatives like WRAP should 

therefore press on with their aims to improve recycling rates of timber, ensure waste segregation 

and continue steps to reduce landfilling of timber. 

Boundary inclusion 

LCA boundary inclusion/exclusion is well known to have significant impact on LCA results. This is 

particularly true when using a Process-LCA methodology, as in this report. The important factor is to 

ensure that boundaries are consistent within a comparative LCA. Treatment of avoided products and 

positive accounting of by-products can have significant effects on the overall results. 

Reducing Intensity of Grid Electricity 

Any analysis based on the “payback” of energy generated or carbon emitted either as a part of the 

use phase of a product (e.g. the installation of loft insulation or the manufacture of renewable 

technologies like photovoltaic panels) are sensitive to the long-term intensity of electricity supplies. 

Defra/Decc [2012] applies a five year rolling average of grid carbon dioxide equivalent intensity. The 

current value of 0.589 kgCO2e/kWh has dropped from 0.884 kgCO2e/kWh in 1990 due to efficiency 

of production and transmission, and use of alternative fuels. As part of the UK renewable energy 

strategy the CO2 intensity of future electricity supplies should reflect a continuing downward trend. 

It is seen in this study that if we were to achieve a hypothetical zero carbon grid intensity that all 

timber frame options would still be GWP negative. However it is noted that the UK is very unlikely to 

move towards a policy of wide scale incineration of wood waste. 

Service Life Impact 

The results of this LCA report are to be read in conjunction with the earlier work on Service Life 

Planning and Whole Life Costing. It was shown that PVC-U windows, even in a mild exposure 

scenario are unlikely to be serviceable beyond 35 years. This means that for a 60 year building life 

the GWP for the PVC-U scenarios considered above should be doubled. This further emphasises the 

environmental impact of fossil fuel based raw materials in construction. 
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Comparison of timber frame options 

Removing PVC-U from the base case scenario reveals the results shown in Figure 13. 

 

Figure 13: Base Case - comparison of timber based window options only 

It can be seen that basic timber windows offer improved GWP values over 60 years for all exposure 

scenarios.  Modified timber options for all exposure scenarios and Al-clad timber windows used in 

mild or moderate exposure scenarios are roughly equivalent. Al-clad timber windows used in severe 

exposure locations may have a higher GWP than alternatives, but this outcome is largely based on 

the assumption that the aluminium cladding will require replacement after 20 years of in-situ use. It 

is argued that the performance of the aluminium will not have been altered detrimentally after this 

time, but that replacement is deemed necessary for aesthetic reasons, i.e. perceived obsolescence. 

5.0 Summary of Conclusions 

 
This report considers the Service Life Planning (SLP), Whole Life Cost (WLC) and Life Cycle 
Assessment (LCA) of four window frame materials: timber, modified timber, aluminium-clad timber 
and PVC-U, under three exposure scenarios: mild, moderate and severe. 
 
Applying a factor analysis, as set out in ISO 15686:8, predicts an expected service life for timber 
windows of between 56 and 65 years; for modified timber windows between 68 and 80 years; and 
for aluminium-clad timber windows 71 and 83 years. These are set against a base case for PVC-U of 
between 25 and 35 years. 
 
Using NPV analysis it is shown that for mild exposures, timber windows offer the lowest lifetime cost 
option. For moderate and severe exposures the more durable modified timber and aluminium-clad 
windows gave more favourable lifetime cost outcomes. In all exposure conditions over 60 years, 
PVC-U window frames were shown to have the highest whole life cost. 
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In nine of the ten impact categories considered in this LCA report, timber based window frame 
options have a lower impact than PVC-U window frames. Where PVC-U is indexed to 100, the 
comparative impacts of timber frame options are 25% or less. The exception to this is noted under 
ozone layer depletion where PVC-U is less than 10% of Al-clad timber options. Sourcing of timber 
and end-of-life treatments were the most influential and critical factors in this LCA study, along with 
the drawing of study boundaries. Recycling at end-of-life offers the most environmentally sensitive 
solution and supports the aims of WRAP in pursuing greater waste segregation, and possible tighter 
restrictions on timber waste entering landfill sites. 
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Appendix 2.1 Service Level Factors 
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